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An efficient water budget is necessary to develop sustainable practices in irrigated 

lands and determine future trends. Despite a lack of detailed knowledge, climate change 

is found to profoundly influence groundwater resources through changes in groundwater 

recharge, groundwater elevation, and groundwater flow processes. Prediction of the 

groundwater level (GWL) under a changing climate is essential to improve agricultural 

management.  

The goal of this research is to predict the GWL from 2056 to 2060 in the 

surrounding area of the MSEA. In order to achieve the target, the first research task is to 

develop a groundwater flow model and then simulate the model to match the historical 

GWL from 1991 to 2014. The School of Natural Resources (SNR) and the Nebraska 

Department of Natural Resources (DRN) provided historical groundwater level, soil 

lithology, and irrigation well data of the site. Visual MODFLOW Flex (version 2015.1) was 

used to develop the groundwater flow model. Results show that groundwater modeling 

fairly matched the historical groundwater pattern.  The calibrated groundwater model was 

then applied to predict GWL in the area from 2057 to 2060 using future climate data. In 

this study, future climate data were obtained from a downscaled climate change 

predictions from the Community Climate System Model (CCSM4) that represents the 

worst climate scenario with a high greenhouse gas emission pathway. Future predictions 
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show an overall decreasing trend of GWL over the simulation period, with increases in 

non-irrigated seasons (winter season) and decreases in irrigated seasons. Nevertheless, 

the declining rate is higher than the recharge rate, which leads to an average decreased 

amount of  3.34 feet from the year 2056 to the year 2060.  
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CHAPTER 1 

PROJECT OVERVIEW AND OBJECTIVES 

1. Project Overview 

Groundwater is an important part of the water cycle and is one of the most valuable 

natural resources in the United States. For example, in Central Nebraska, groundwater is 

the main source of water for farming activities (i.e., irrigation). Irrigation has supported 

agricultural production, resulting in $50 billion in sales in 2012 (U.S. Department of 

Agriculture, 2014). Nonetheless, throughout the years, farming practices have been 

increasing the concentration of chemicals in shallow aquifers. Therefore, a good 

understanding of how groundwater moves through a shallow aquifer is required to assess 

the Best Management Practices (BMPs) to mitigate groundwater contamination (McGuire 

and Kilpatrick, 1998). 

Climate change may be defined as the alteration of the composition of the Earth’s 

atmosphere due to the growing greenhouse emission because of human activities. For 

instance, variations in precipitation and temperature during the year will have a direct 

impact on changes in groundwater level (Darwin, 2010) . Variations in the climate 

influence the groundwater system both directly (e.g., recharge due to precipitation and 

snow melt) and indirectly (e.g., through changes in groundwater uses). Both processes 

can be affected by human activates such as changes in land use. Changes in climate 

could also affect groundwater primarily through changes in irrigation demands due to 

variations of precipitation (Taylor et al., 2012).  

In this work, we focus on simulation and prediction of the groundwater level in the 

proximity of the Nebraska Management Systems Evaluation Area Site (MSEA) in Central 

Nebraska. Several previous studies strived to determine the groundwater movement in 
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this area. For instance, in 1992, the U.S. Geological Survey (USGS), the U.S Department 

of Agriculture  (USDA) and the University of Nebraska-Lincoln (UNL) defined a 

hydrogeological system in the proximity of the MSEA site to aid the interpretation of 

groundwater sampling (McGuire and Kilpatrick, 1998). Furthermore, USGS conducted 

a study of the future groundwater availability in the high plains to provide a tool for water 

resources managers and stakeholders (Peterson et al., 2016). Both studies investigated 

the groundwater movement in shallow aquifers based on historical and measured data. 

Groundwater models have been widely accepted and used as a tool for water-

resources investigations. Although the configuration of the groundwater flow is complex 

to determine, some assumptions helped approximation.  However, due to the lack of 

information and techniques, assumptions such as the uniform distribution of hydraulic 

conductivity, simplified boundary conditions, and groundwater recharge were necessary 

to simulate physical groundwater levels. For instance, McGuire and Kilpatrick (1998) 

arbitrarily divided the aquifer in half and assumed a constant hydraulic conductivity for 

both parts. In some cases, over-simplified assumptions could lead to non-realistic 

solutions especially if the model area is vast. Nevertheless, because groundwater flow 

models are mathematical simplifications of complex natural systems that limit their 

accuracy, it is crucial to know how practical these limitations are when using models and 

interpreting results (Gannett et al., 2012).  

In this work, we developed a 3-D groundwater flow model in the surrounding area 

of the MSEA. Different from the previously modeling efforts, a realistic 3-D soil lithology 

model of the site was developed based on soil lithology data collected by SNR of UNL. 

Due to the lack of stream gauging near to the site, historical groundwater data from DNR 

were gathered to determine boundary water levels from 1991 to 2014. Monthly actual 

evapotranspiration and precipitation data were collected to assist in determining well-
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pumping rates (Swenson, 2006)  in the study area. Comparisons between calibrated 

targets to historical groundwater levels indicate that the model reproduced acceptable 

groundwater levels. Therefore, the model was used to forecast groundwater levels from 

2056 to 2060. Well pumping rates were determined by using predicted precipitation from 

the Weather System and Forecasting model (WRF), actual evapotranspiration and 

groundwater recharge from Hydrus-1D inverse modeling. Furthermore, boundary 

conditions were estimated by extrapolating historical river elevations. Results of this study 

show that groundwater will decreases 3.34 feet on average through the groundwater 

simulation (2056 to 2060).  

The developed 3D groundwater model considers realistic data such as geospatial 

evapotranspiration data, historical precipitation detected by NOAA radar, historical 

groundwater elevations,  soil lithology types, and distributed permeability of the aquifer 

whereas most available groundwater models assumed average values. Nevertheless, our 

model considers a spatial and temporal variation of input data. Therefore, the results of 

the model are highly positive and can likely predict groundwater level variations due to 

climate changes.  

2. Objectives 

The overall aims of this study include two particular but related scenarios: 

1. Calibrate a groundwater model by comparing simulated data and historical 

groundwater data from 1991 to 2014. 

2. Predict the groundwater flow for 2056 to 2060 based on future climate change 

data. 
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3. Thesis Organization 

This thesis is organized into 4 chapters and their sub-chapters. Chapter 1 gives a general 

review or summary of this research and provides broad objectives.  Chapter 2 provides a 

background review on groundwater flow, hydrogeological properties of the subsurface. 

Chapter 3 addresses the first aim, i.e. determination of the groundwater flow in Central 

Plate Nebraska. Chapter 4 addresses the second goal, i.e. prediction of the groundwater 

flow for 2056 to 2060 in Central Plate Nebraska. Chapter 5 provides general conclusions 

of the research. 

4. References 

Darwin, C. (2010). Climate Change and Groundwater. 

Gannett, M. W., Wagner, B. J., & Lite, K. E. (2012). Groundwater simulation and 
management models for the Upper Klamath basin, Oregon and California. US 
Department of the Interior, US Geological Survey. 

McGuire, V. L., & Kilpatrick, J. M. (1998). Hydrogeology in the vicinity of the Nebraska 
management systems evaluation area site, central Nebraska (No. 97-4266). US 
Dept. of the Interior, US Geological Survey; Information Services [distributor]. 

Peterson, S. M., Flynn, A. T., & Traylor, J. P. (2016). Groundwater-flow model of the 
northern High Plains aquifer in Colorado, Kansas, Nebraska, South Dakota, and 
Wyoming (No. 2016-5153). US Geological Survey. 

Swenson, S., & Wahr, J. (2006). Estimating large-scale precipitation minus 
evapotranspiration from GRACE satellite gravity measurements. Journal of 
Hydrometeorology, 7(2), 252-270. 

Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., ... & Konikow, L. 
(2013). Ground water and climate change. Nature Climate Change, 3(4), 322-329. 

U.S. Department of Agriculture, 2014, Census of agriculture for 2012: Washington, 
National Agricultural Statistics Service, digital data, accessed November 17, 2009, 
at http:// www.agcensus.usda.gov/. 
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CHAPTER 2 BACKGROUND 

1. Historical and recent studies of modeling ground water flow in central 

Nebraska. 

Previous studies have modeled groundwater flow in Central Nebraska. In the 

1990’s, the U.S Geological Survey (USGS), the U.S Department of Agriculture (USDA) 

and the University of Nebraska-Lincoln (UNL) conducted a groundwater flow modeling 

study in the surrounding area of the Nebraska Management Systems Evaluation Area 

(MSEA) site. The main objective of their study was to understand how groundwater moves 

through the shallow aquifer to strengthen the effectiveness of the best management 

practices (BMPs) on reducing nitrate concentration in groundwater. The shallow aquifer is 

the principal source of water for most irrigation wells in Central Nebraska. The study area 

is 50 mi2 where 75% is irrigated corn and 10% is irrigated soybeans. The hydrogeology of 

the site is mainly composed of sand and gravel and interbedded silt and clay soils 

(McGuire and Kilpatrick, 1998). They collected hydrological data such as precipitation, 

river stages and groundwater level and geological data such as soil lithology and hydraulic 

conductivity for every soil type. The model simulated two steady state periods, i.e. 1931 

and 1991. The model did not consider transient simulation due to the variance over the 

time of the boundary conditions and pumping rate. Their results showed that the water 

entered the study area from western boundary and left the eastern boundary. 

Furthermore, the north boundary (Wood River) is not hydraulically linked to the aquifer 

(McGuire and Kilpatrick, 1998).  Some oversimplified assumptions in the study, such as 

homogeneous hydraulic conductivity, simple type of boundary conditions and steady-state 

flow, could cause the results to deviate from real groundwater conditions.  

In 2016, Peterson et al.  developed a groundwater flow model of the Northern High 

Plains Aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming that covered 
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roughly 175,000 square miles. This simulation strived to evaluate the future groundwater 

availability in various potential future conditions to support science-water resources 

management. This problem emerged due to the increasing droughts across the northern 

aquifer. This simulation had two periods. One period included the years before 1940 and 

the second term from 1940 to 2009 (Peterson et al., 2016). In this work, a groundwater 

conceptual model was developed using MODFLOW FLEX. Soil Water Balance (SWB) 

(Westenbroek et al., 2010)  was applied to determine the hydrological data such as 

recharge from precipitation and irrigation pumping rate.  The hydraulic conductivity of the 

high plains aquifer is composed of sand, loamy sand, gravel and some interbedded clay 

and silts. Precipitation and recharge increase from west to east (Peterson et al., 2016). 

Furthermore, they improved the groundwater conceptual modeling by adjusting more than 

1300 parameters to match the historical groundwater data. The historical data contained 

groundwater level measurements from more than 343,000 wells and base flow from ten 

thousand streams.  Mean calibrated recharge was smaller than estimated with the SWB; 

therefore, adjustment was conducted to improve the match of the groundwater calibration 

targets (Peterson et al., 2016). The model is by far the most comprehensive groundwater 

flow model in the area. This model covers the groundwater flow of the Northern High Plains 

Aquifer which comprise 62 million acres in the states of Colorado, Nebraska, South Dakota 

and Wyoming with a mesh resolution of 3281 ft. Therefore, this model works for regional 

evaluation of groundwater resources. Our study area is 50 square miles with a mesh 

resolution of 500 ft., which is six times finer than the mesh resolution of the regional model.  

In 2007, the Cooperative Hydrology Study (COHYST) assisted NE Natural 

Resources Districts in the study of groundwater management. COHYST is a study of the 

surface water and groundwater resources and the effects of agricultural activities over the 

Platte River Basin of Nebraska.  Furthermore, COHYST used a strategy where a simple 
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groundwater model was first developed, and then additional details were added as 

needed. This groundwater modeling began with a conceptual model, which is a narrative 

description of the groundwater flow at the beginning of the simulation period. MODFLOW-

2000 was the selected software. The model was constructed to investigate the effects of 

water management plans in a large-scale area of 10,400 square miles. The model was 

discretized into 206 rows and 300 columns where every cell measured 2640 ft. per side. 

Due to the large simulation area, the model will not accurately represent areas of a few 

square miles or less area. In addition, the model was designed to look at the effects of 

water management plans over scales of years to decades. It should not be viewed as 

capable of predicting effects through one year or less because it may not be sufficient to 

predict groundwater level under variations of precipitation and climate (Peterson et al., 

2007) 

2. Influence of Climate Change on Groundwater Flow  

A key factor in developing a successful groundwater model is the accuracy of the 

hydrological data for input, such as precipitation, groundwater recharge, and actual 

evapotranspiration. Larger groundwater models depend on temporal and spatial 

climatological data to investigate the future climate changes on groundwater resources. 

Global climate models (GCMs) have been designed to predict changes in climate due to 

the increase of carbon and other greenhouse gases in the atmosphere. Nevertheless, 

there are uncertainties with this model that trigger the analysis of the average of multiple 

climate scenarios (Crosbie et al., 2011) .  The effects of climate change and interaction 

between the unconfined aquifer and the atmosphere have been studied and modeled to 

determine the fluctuation of groundwater level (Scibek and Allen, 2006).   

Researchers have been trying to quantify the impact of potential climate change 

on groundwater resources using hydrological models (Bouraoui et al., 2009) . For 
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instance, Jyrkama and Sikes (2007) applied the Hydrological Evaluation of Landfill 

Performance model (HELP3) hydrological model to estimate potential groundwater 

recharge at a regional scale based on high spatial and temporal resolution. Actual 

evapotranspiration and potential groundwater recharge times-series have been predicted 

using results from a stochastic weather generator for three prominent locations in the north 

and south of Great Britain (Herrera-Pantoja and Hiscock, 2008). Notwithstanding, a 

common approach for most studies includes the following steps: (1) obtain data from 

GCMs, (2) downscaled climate data, (3) run future climate time series to estimate 

groundwater recharge and (4) use the new groundwater recharge to evaluate future 

climate scenarios (Crosbie et al., 2010). 

Groundwater recharge can significantly vary over space and time due to its 

nonlinear nature. Therefore, estimating groundwater recharge is one of the most 

challenging tasks in the field of hydrology. With the help of inverse modeling, soil moisture 

data, potential evapotranspiration, and precipitation from automated weather data were 

used to estimate the spatial distribution of groundwater across Nebraska State (Wang et 

al., 2016). Akbariyeh (2017)  used forecasted data from the Weather Research and 

Forecasting (WRF) to predict groundwater recharge in Nebraska. WRF is a regional 

climate change model that downscales the climate change predictions from the 

Community Climate System Models (CCSM4). CCSM4 is a global climate change model 

that simulated the Representative Concentration Pathways (RCP) 8.5 scenario which 

corresponds to the worst climate scenario with a high greenhouse gas emission pathway. 

Climate data from this model such as precipitation, land surface, temperature, leaf area 

index and soil moisture were used to determine groundwater recharge and actual 

evapotranspiration from the inverse modeling using Hydrus 1-D. Groundwater recharge 

and actual evapotranspiration are critical variables that will determine the future 



www.manaraa.com

9 

 

groundwater withdrawal and aquifer replenish. Therefore, a groundwater model coupled 

with regional scale climate data and climate scenario will be used to establish future 

fluctuation of groundwater level in the surrounded area of the Management Nebraska 

system Evaluation Area (MSEA).  
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CHAPTER 3 SIMULATION OF THE GROUNDWATER LEVEL IN TH E 

SURROUNDING AREA OF MSEA IN CENTRAL PLATTE NEBRASKA  UNDER 

HISTORICAL DATA.  

1. Overview 

The goal of this chapter is to develop a groundwater flow model to simulate 

groundwater level (GWL) in the surrounding area of MSEA site. Historical groundwater 

level data were used to calibrate the model. The groundwater model was developed based 

on available data, including soil lithology information from forty-three test holes, historical 

groundwater level data, as well as irrigation well information within the research area. The 

focus aquifer of this study is the Shallow High Plains aquifer. The geological unit is mainly 

composed of sand and gravel with interbedded silt and clay zones.  A three-dimensional 

distributed hydraulic conductivity field of the study area was developed using Rockworks 

17 (Rockware). Results show that the distributed hydraulic conductivity of the site varies 

from 42 to 172 feet per day. The distributed hydraulic conductivity field of the site was then 

imported into Visual MODFLOW Flex V.2015 (Waterloo Hydrologic) to simulate the 

groundwater flow in the area.  

 The average groundwater recharge was assumed based on previously published 

studies (Szilagyi et al., 2005 and Szilagyi et al., 2013), where the recharge of the site 

ranged from 10 mm/yr to 30 mm/yr. For the study area, an average value of 20 mm/yr (or 

0.80 in/yr) was established which is the mean value between 10 and 30 mm/yr. The upper 

and bottom boundary conditions for the site were defined based on the groundwater table 

and the base of the shallow aquifer, respectively. The northern boundary is the Wood 

River which is not hydraulically connected to the shallow aquifer, whereas the Platte River 

is the south boundary and was assumed to be a constant head boundary. A transient 

groundwater flow model was simulated from 1991 to 2014. Simulated groundwater levels 
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were compared with available historical groundwater table data collected on the site. A 

generally acceptable agreement between simulated and historical groundwater levels 

suggested that the calibrated model can be used to examine future groundwater 

scenarios.  

2. Model assumptions 

Model simulation includes using spatial and temporal data from various sources. Some 

assumptions were also made due to the lack of information: 

• Due to the lack of detailed distribution of groundwater recharge (GR), the model 

assumes a constant recharge rate equal to 0.80 in/yr (see figure 3-13).   

• Total porosity and effective porosity were assumed to be approximately similar to 

sand and gravel for which porosity ranges from 0.25 to 0.50 on average. 

• When data is not available, pumping wells were assumed to have a fully screen 

case. 

• All irrigation wells that penetrated the silt layer were assumed to be fully 

penetrated. 

• The initial groundwater level was generated using monitoring wells assuming that 

the groundwater level did not change in the next sixty days. 

• The amount of water pumped from the aquifer was assumed to be fully used by 

actual evapotranspiration.  

• The water cycle for the soil was assumed vertical dominated. Therefore, water 

runoff was considered negligible.  
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3. Methods 

3.1. Study Area.  

The study area covers 50 square miles, and it is located between the Gibbon and 

Shelton Cities, bounded by the Wood River on the north and Platte River on the south. 

Figure 3-1 is the location of the study area.   This area is intensively cropped where 75% 

is irrigated corn, and 10% is irrigated soybeans. The ground surface elevation ranges from 

2085 feet in the west to 1990 feet in the east. The thickness of the hydrological unit is 80 

to 100 feet on average (McGuire and Kilpatrick, 1998). The geologic unit is composed 

of sand and gravel with interbedded silt and clay deposits in some areas (McGuire and 

Kilpatrick, 1998).    

 

  Figure 3-1.  Location of the study area and its north and south boundaries. 

3.2. Methods to Develop the 3-D Hydraulic Conductiv ity Model of the 

Study Area.  

The Institute of Agriculture and School of Natural Resources of the University of 

Nebraska-Lincoln (UNL) maintains an interactive test hole map viewer which contains the 

stratigraphy and lithology of thousands of test holes in the state of Nebraska.  Forty-three 
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bore holes (Figure 3-2) were identified within the study area. Relevant information can be 

extracted from each test hole, including latitude, longitude, DEM elevation and soil type at 

different depths. The information was then inputted into Rockworks V.17 (“RockWare, 

Inc.,” 2016)  to generate a 3-D soil lithology model. Figure 3-3 illustrates the information 

obtained from the UNL test hole database. Rockworks is the standard software in the 

petroleum, environmental, geotechnical, and mining industry for subsurface data 

visualization, with popular tools such as maps, cross sections, fence diagrams, solid 

models, and volumetrics (“Rockware, Inc.,” 2016).  Figure 3-4. shows borehole distribution 

throughout the site. 

 

Figure 3-2.  Location of the bore holes within the research area 
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. 

Figure 3-3.  Sample of the soil lithology data from the School of Natural Resources 

 

Figure 3-4.  Borehole distribution within the site area.  

As mentioned earlier, the geological unit is composed mainly of sand and gravel 

with some interbedded clay and silt. The investigated subsurface lithological well logs 
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indicated that the area consists of six soil types, where 90% consists of sand, gravel, and 

sand and gravel and 10% consists of sandstone, clay, and topsoil. In this work, we used 

lithological modeling techniques that were based on litho blending solid tool provided by 

Rockworks V.17. The lithological modeling illustrates the complexity of the 

hydrostratigraphy framework of the study area and shows the spatial trend and variability 

of thickness and heterogeneity of the aquifer (Ahmed, 2009). The model resolution was 

2000 ft. (X) x 2000 ft. (Y) x 0.5 ft. (Z). Therefore, the discretization in the X, Y, Z directions 

consisted of 29 x 25 x 313 nodes, respectively.  A 3-D lithology model was created by 

employing a horizontal litho blending algorithm and smoothing the resulted solid to 

resemble the heterogeneity of aquifer.  Figure 3-5 presents front and rear view of the 

lithological model created by Rockworks. As shown here, a silt layer constrained the 

bottom of the lithologic model, which is consistent with well log data.  

 

Figure 3-5.  Front and rear view of the lithological model.  

The lithological model produced by Rockworks includes the distributed hydraulic 

conductivity field of the study area. A hydraulic conductivity (K) value was first assigned 

to each node based on typical K values of the corresponding soil types (Delleur, 2006).  

Table 1 provides the K values used for each soil type. 
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Lithology Hydraulic Conductivity [ft. d -1] 

Sand 41 

Sand and Gravel 172 

Clay 0.66 

Gravel 328 

Sandstone 0.10 

Silt 0.15 

Table 1.  Typical hydraulic conductivity values for soils present on the site.  

In this method, voxel node values were assigned horizontally until it found a region that 

has a voxel node with a different soil type.  The final solid was smoothed to average the 

K values allocated to every voxel.  Here, a “voxel” is a tridimensional cell that contains 

geospatial information and geological data. The resulting K field ranges from 42 ft./d for 

sand to 172 ft./d for gravel (Figure 3-6). Ultimately, this smoothed lithology was exported 

to ASCII XYZG values where XYZ describes the location and G represent the average 

hydraulic conductivity of the voxel. The Rock works Solid, Smoothing Filter tool, reads an 

existing solid model and averages the G-values based on a user declared "filter" size 

(Rockworks). Therefore, if the horizontal filter size is set up equal to “1”, then each node 

will assign the average of itself and the eight nodes immediately surrounding it. 

Furthermore, if the vertical filter size is “1”, then each node will be assigned the average 

of itself and the nine nodes immediately above and below it (“RockWare, Inc.,” 2016).  
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Figure 3-6.  Solid smoothing filter tool approach and the distributed hydraulic 

conductivity field. 

3.3. Groundwater Flow Model.  

The U. S. Geological Survey′s (USGS) MODFLOW (McDonald, 2005) is a 

modular, three-dimensional, finite-difference groundwater flow model which is widely 

applied in groundwater modeling. Visual MODFLOW Flex version 2015.1 was used to 

simulate the study area.   

3.3.1. Defining a Modeling Domain and Hydraulic Con ductivity Field 

The first modeling step is to establish a groundwater conceptual model, which 

describes the groundwater occurrence and movement in the study area including physical 

characteristics (aquifer thickness, aquifer base elevation, groundwater flow rate), inflows 

and outflows from the aquifer and any change in storage over time (Peterson et al., 

2005).  

The shallow aquifer is the principal hydrogeologic unit in this study. Therefore, it is 

necessary to define the top and bottom horizon of the aquifer. Two surfaces were obtained 

by the upper most voxel node from the soil lithology model generated and the higher voxel 

node of the silt layer. As this data is imported to MODFLOW Flex, the software 
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automatically creates the solid hydrological unit between both ground and the silt layer.  

Figure 3-7 shows the imported soil surface, silt layer, and the solid zone formation.  The 

upper surface elevation ranges from 2042 feet to 1993 feet above sea level and the bottom 

layer from 1973 feet to 1936 feet above sea level. The average thickness of the aquifer 

ranges from 80 feet to 100 feet. 

 

Figure 3-7.  Imported point data, interpolated surfaces, and the zone of the geological 

formation. 

Three essential parameters need to be defined prior to the translation of the 

conceptual modeling to numerical modeling, including conductivity, storage, and initial 

heads. The hydraulic conductivity model created by Rockworks was imported into Visual 

Bottom dots layer

Aquifer base 

Aquifer 

Top dots layer

Ground surface 
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MODFLOW Flex. Figure 3-8 shows the imported hydraulic conductivity field in 

MODFLOW.  

 

Figure 3-8.  MODFLOW hydraulic conductivity field in feet per day. 

The hydraulic conductivity is smaller on the north boundary (Blue section) than the 

south (Red section). This difference is because the soil type at the northern side mainly 

consists of sand whereas the southern border has more gravels. The total porosity of the 

geological formation ranges from 0.25 to 0.50 (Delleur, 2006).  The average effective 

porosity is 0.15 and the average total porosity used was 0.35. The initial hydraulic heads 

used for the present study were defined according to the historical groundwater flow levels 

in the year 1991 as reported in a USGS report (McGuire and Kilpatrick, 1998) ( Figure 3-

9).  
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Figure 3-9.  Simulated and observed groundwater table in the study area, 1991 

(McGuire and Kilpatrick, 1998 ). 

3.3.2. Defining Boundary Conditions 

The upper boundary of the shallow unconfined aquifer is defined as a water table 

boundary. The monitored water table in the year 1991 was used as the initial value. The 

lower boundary of the model is a silt layer which was obtained from bore hole data. 

Therefore, a no flow boundary condition was defined on the bottom boundary of the model. 

The southern boundary is the Platte River, which is hydraulically linked to the aquifer and 
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therefore it was assumed as a specific head boundary (McGuire and Kilpatrick, 1998). 

The northern limit of the study area is the wood river, which is not hydraulically connected 

to the aquifer (McGuire and Kilpatrick, 1998).  Therefore, it was simulated as a general 

head boundary.  The western and eastern boundary of the model were also simulated as 

general head boundaries (GHB) because the water enters from the west and leaves the 

study area from the east side.  A GHB allows groundwater flow in or out of the model 

domain (depending on groundwater elevation changes along the boundary). GHB 

conditions can approximate the hydraulic responses of the limit to the groundwater 

conditions variations. Figure 3-10 illustrates the boundary conditions in a 2-D plane: 

 

Figure 3-10.  Boundary conditions in a 2-D plane for the site area. 

The purpose of using the general head boundary condition is to avoid 

unnecessarily extending the model domain outward to meet the element influencing the 

head in the model. As a result, the General Head boundary condition is usually assigned 

along the outside edges (sides) of the simulation model domain (MODFLOW, 2016). While 

a constant head boundary provides an infinite source of water, a general head boundary 

does not give an infinite amount of water. Figure 3-11 depicts the concept of general head 

General Head Boundary  

Constant Head Boundary 

Active Cells 

Inactive Cells 

Discretization: 

62 Rows        Rotation: 21degres  

110 Columns 
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boundary and relevant parameters. The boundary distance used was 100 feet. The 

conductance is a numerical parameter that represents the resistance to flow between the 

source and model domain. This variable was calculated according to (MODFLOW, 2016):  

C =
�LxW�K

D
 

Where,  

• (LxW) is the surface area of the grid cell face exchanging flow with the 

external source/sink. 

• K is the average hydraulic conductivity of the aquifer material separating 

the outer source/sink from the model grid. For the model, average hydraulic 

conductivity is roughly 90 ft./d. 

• D is the distance from the external source/sink to the model grid. 

 

 

 

 

 

 

 

 

 

Figure 3-11.  General head boundary schematics and its variables 

To apply the general head boundary condition, a reference water level was 

needed. Similarly, to implement the specific head boundary condition, water head at the 
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location of Platte River was necessary. Because no river stage was found close to the 

study area, groundwater head at the boundary was estimated by interpolating data from 

historical groundwater data.  From the SNR database (School of Natural Resources, 

2017), groundwater monitoring wells were in the study area, which provides groundwater 

level data from year 1991 to year 2014. Interpolation was conducted based on the 

groundwater levels in each monitoring well from 1991 to 2014 to get an average yearly 

groundwater map. Time series data were generated for every boundary point. A total of 

56 points were defined according to the numerical discretization for the upper boundary 

to serve as a reference water level to implement the general head boundary. 18 points 

were defined for the south boundary at the Platte River to implement a specific head 

boundary. Figure 3-12 shows the 18 points of the Platte River boundary and figure 3-13 

shows an example interpolated groundwater elevation map in the model domain area in 

year 2000 and time series data at two selected locations in the boundary.  

 

Figure 3-12.   Platte River divided into eighteen points to simulate south boundary. 
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Figure 3-13.  Groundwater elevation variation for points PR1 and PR8 (Bluepoints) in the 

Platte River and interpolated groundwater map from monitoring wells (white points) for 

the 2000 year 
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3.3.3. Determination of Pumping Rate and Recharge 

A study of the land use area showed that roughly 70% of the researched area is 

covered by cultivated crops (McGuire and Kilpatrick, 1998), including irrigated corn 

and irrigated soybeans.  The groundwater recharge ranges from 10 to 30 in/year, 

where 20 mm/yr was used as the average of the range (Szilagyi,  2003). Figure 3-14 

shows the long-term estimate base annual groundwater recharge. Figure 3-15 is GIS  

data from the National Land Cover Database (NLCD 2011), which illustrates the land 

use distribution of the study area. The National Land Cover Database (NLCD) serves 

as the ultimate Landsat-based, 30-meter resolution, land cover database for the 

Nation. NLCD provides spatial reference and descriptive data for characteristics of the 

land surface such as thematic class (for example, urban, agriculture, and forest), 

percent impervious surface, and percent tree canopy cover (USGS, 2017). Many 

irrigation wells were located in the study area, and the pumping rates of these wells 

will impact groundwater flow in this area. Therefore, it is important to determine the 

pumping rate of irrigation wells when modeling groundwater flow in the area.  

  

 

 

 

 

 

 

Figure 3-14.  Estimate long-term base annual groundwater recharge in mm/yr (Szilagyi, 

2003). 
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Figure 3-15.  Soil land use and bar graph that shows the land use distribution over the 

research area. 

According to the Nebraska Department of Natural Resources (NDNR), a total of 400 

irrigation wells are in the area, where 258 irrigation wells pump the groundwater from the 

shallow aquifer, and approximately 142 wells pump water from the Ogallala aquifer. Figure 

3-16 shows the density of wells within the study area (NDNR, 2017).  
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Figure 3-16.  Irrigation well density in the study area 

NDNR maintained a database which provides crucial information on all registered 

irrigation wells, including, well ID, well location (latitude, longitude), pumping start and end 

date, irrigated area, well depth and well elevation. However, there is no information about 

pumping rates and operational schedules of each irrigation well. Therefore, it is necessary 

to determine the amount of water that was pumped out for irrigation. Because all the 

pumps were for irrigational purposes, we assumed that plant transpiration and soil 

evaporation consumed all pumped water. If there was any over pumping, we assumed 

that extra pumped water infiltrated back to the subsurface. Therefore, the amount of water 

that was pumped out would be equal to the difference between the precipitation and actual 

evapotranspiration of the crop in the area. For wet days where the precipitation exceeded 

the actual evapotranspiration, it was assumed that there was no water extraction from the 

aquifer. Therefore, the pumping rate for that day was null. Whereas, for dry days where 

the actual evapotranspiration exceeded the precipitation, the difference between them 

became the water needed for plants to strive. Ultimately, water reaches the soil in the form 

of rainfall then the water diverted into infiltration and runoff. For our study runoff was 

     Irrigation Wells 
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assumed to be negligible because areas in high plains are flatter, as well as, soil is 

permeable.  

 In order to estimate the amount of water pumped out, actual ET and precipitation 

data of the study area were needed. The monthly precipitation data were obtained from 

the National Centers for Environmental Information (NOAA). NOAA implements an 

interactive map tool (NOAA, 2017) that shows the precipitation data captured by radar. 

Figure 3-17 is an example monthly average precipitation for May 2010. Occasionally for 

some months, no radar was available within the study area, the precipitation of the nearest 

radar station was used to approximate the precipitation of the study area. Also, if there 

were more the two radars near to the study area, the average of all radars was be 

assumed to be the precipitation of the site.  

 

Figure 3-17.  Average monthly precipitation for May 2010. 

 ET accounts for the water transferred to the atmosphere by two processes known 

as transpiration and evaporation. Based on the advancement in remote sensing 

technology, the Google Earth Engine Evapotranspiration Flux (EEFLUX) calculates ET as 

a residual of the energy balance because evapotranspiration consumes energy during its 

Study Area  

P=5.40 in 
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process. Using thermal data images from LANDSAT and MODIS which are satellites 

program that capture imagery of the Earth. The EEFLUX package offers the estimation of 

actual evapotranspiration at a resolution of 30 m (Irmak et al., 2012) . In this work, ninety 

satellite images (LANDSAT 5 and LANDSAT 8) were downloaded, and the monthly 

average actual ET was calculated by averaging the spatial data of the site using software 

ArcMap 10.5. (ESRI Geographic Information System Company). Figure 3-18 shows an 

example of the downloaded digital image from EEFLUX in ArcMap 10.5 for August 2002. 

 

Figure 3-18.  Actual evapotranspiration (mm/d) in the study area for August 2002. 

Figure 3-19 shows the typical average daily ET during the growing season (Dupon 

Pioneer, 2017) . Figure 3-20 showed the monthly average actual ET estimated based on 

EEFLUX image data from 1991 to 2014, where ET ranges from 0.03 inches per day during 

the early growing season to 0.30 inches per day during the growing season. Comparing 

the observed actual ET from EEFLUX data and average seasonal actual ET data or 

Central Nebraska (Figure 3-20), actual evapotranspiration rates seem to be within 

acceptable ranges, and they can be used to estimate well pumping rates.  
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Figure 3-19.  Average daily ETa for corn and soybeans in Central Nebraska (Dupon 

Pioneer, 2017)   

 

Figure 3-20.  Average daily ET for research area calculated from EEFLUX. 
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Ultimately, to calculate the pumping rate for each well, it was necessary to multiply 

the irrigated area of each well with the difference between actual ET and precipitation, 

which provides a pumping rate in the unit of ft3/d. Table 3 shows an example calculation 

of a well that irrigates 80 acres. The irrigation season began in May and ended in October 

for the research study.  

Table 2.  Pumping rate calculate based on actual evapotranspiration and precipitation for 
the year 1991. 

Note: 

Col 3 = Col 2 /25.4      
Col 4 = Col 3 * #days in month 
Col 6 = Col 4 – Col 5 
Col 7 = Col 6 *# day in month / 12 
Col 9 = Col 7* Col 8 
 
 

 

1 2 3 4 5 6 7 8 9 

MONTH ETa    
(mm/d) 

ETa     
(in/d) 

ET      
(in/M) 

P2ave              

(in/M) 
E-P            

(in/M) 
E-P              
(ft/d) 

Area(Ft 2)  
80 acres 

Rate 
(ft 3/d) 

1/1/1991 0.00 0.000 0.00 0.00 0.00 0.0000 3484800 0 

2/1/1991 0.00 0.000 0.00 0.00 0.00 0.0000 3484800 0 

3/1/1991 0.00 0.000 0.00 0.00 0.00 0.0000 3484800 0 

4/1/1991 0.00 0.000 0.00 0.00 0.00 0.0000 3484800 0 

5/1/1991 0.793 0.031 0.94 5.61 0.00 0.0000 3484800 0 

6/1/1991 3.495 0.138 4.27 1.21 3.06 0.0082 3484800 -28624 

7/1/1991 5.750 0.226 6.79 1.35 5.44 0.0151 3484800 -52672 

8/1/1991 5.590 0.220 6.82 1.80 5.02 0.0135 3484800 -47049 

9/1/1991 3.043 0.120 3.71 0.89 2.82 0.0076 3484800 -26454 

10/1/1991 1.176 0.046 1.39 1.10 0.29 0.0008 3484800 -2797 

11/1/1991 0.00 0.000 0.00 0.00 0.00 0.0000 3484800 0 

12/1/1991 0.00 0.000 0.00 0.00 0.00 0.0000 3484800 0 
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3.3.4. Numerical Engine Setup  

The numerical model regularly spaced grid 62 rows and 110 columns using the finite 

difference grid approach. Each row and column represent 505 feet and 510 feet, 

respectively. Therefore, every cell represents an area of about 6 acres. The numerical grid 

was rotated 21-degrees in the counterclockwise direction to align the model with the rivers. 

The influence of the mesh size on the numerical simulation was examined. It was found 

that results were not influenced if mesh sizes were at or smaller than 500 ft.  In the vertical 

discretization, the model uses the deformed grid type where the top and the bottom of the 

model layers follow the horizon elevation. The minimum elevation is 1920 feet, and the 

maximum elevation is 2060 feet. The vertical discretization is divided into three layers.  

A transient model was defined where there is a total of 328 stress periods based 

on from the time-period of boundary conditions and time schedule for all pumping wells. 

MODFLOW NWT, a Newton-Raphson based numerical engine for MODFLOW-2005, 

was used to solve the present study. Due to its capacity to address asymmetric matrices 

(McDonald, 2005) , the numerical model can converge easily by using MODFLOW NWT. 

4. Results and Discussion 

In general, groundwater moved horizontally from the western boundary to the 

eastern boundary. During the simulation period, the water table fluctuated, with a higher 

water level declination in the irrigation season due to higher pumping rates. Over the 

years, there was a substantial decrease of the water table elevation. Furthermore, the 

more water level decrease was greater on the western side of the study area than the 

eastern side, which was due to the higher density of irrigation wells in the west part of the 

study area. Figure 3-21 shows the groundwater table for non-irrigation season (left side 

picture) and irrigation season (right side picture) every five years. 
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(a) 

  

(b)

 

(c) 



www.manaraa.com

35 

 

(d) 

  

(e) 

 

(f) 

Figure 3-21 . Groundwater table simulation for non-irrigation season (left picture-May) 

and irrigation season (right picture-August) for: (a) 1991, (b) 1995, (c) 2000, (d) 2005, (e) 

2010 and (f) 2014 
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Figure 3-22 provides a time series of water table changes at the four corner points 

of the MSEA. In all four points, groundwater levels were up and down periodically.  There 

was always a substantial increase of the groundwater table in non-irrigation seasons, and 

a decline in irrigation seasons (May-October). The declination of the water table in 

irrigation seasons can be attributed to the pumping rates, which were higher than the 

aquifer replenishment rates. During the non-growing season (from November to April), the 

groundwater level tended to rise due to the lack of pumping and contributions from 

precipitation and snowmelt that replenish the aquifer; whereas, during the growing season 

(from May to October), the groundwater table tended to decrease due to water pumping 

for irrigation. Comparing both seasons, groundwater declination cannot be fully 

compensated by groundwater recharge especially in areas where the hydraulic 

conductivity is higher. The groundwater elevation is decreasing slowly year by year, at an 

average rate of roughly 0.21 feet per year around the MSEA due to the significant amount 

of pumping rate.  

 

Figure 3-22.  Location and groundwater table declination within the MSEA area. 
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Simulated groundwater tables were compared to observed groundwater tables of 

the study area from year 1991 to 2014, as shown in Figure 3-23. The simulated 

groundwater table follows a similar trend as the observed groundwater table, with a higher 

water table in the west. For some years, simulated water table contours were more curved 

than observed water table contours. This could be because only seven monitoring points 

were available to create the observed groundwater head contours, which will provide 

flatter curves. In the numerical simulation, 258 irrigated wells were included and much 

more detailed water head information was available. Figure 3-24 presents a comparison 

of water tables at the locations with monitoring wells for each year, which includes 155 

data points.  As shown in figure 3-24, most data are located close to the 1:1 line, indicating 

an acceptable agreement between simulated and observed water table levels. The 

comparison by points revealed that the maximum estimation error is roughly 4 ~5 feet. 

Given the limited information of the site and the uncertainties related to hydrogeological 

and pumping information, it can be considered the approach to calibrating the groundwater 

level  acceptable. The model will be extended to predict the groundwater level under future 

scenarios.  
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Figure 3-23.  Comparison between observed and simulated groundwater table for May 

(a) 1995, (b) 2000, (c) 2005, (d) 2010 and (e) 2014 
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 Figure 3-24.  Comparison between observed and simulated groundwater table for 

all monitoring wells. 

5. Conclusions 

A model was developed to simulate the movement of the groundwater through the 

subsurface within the study area using Visual MODFLOW Flex V.2015. The study area 

covers approximately 50 square miles where 75% is irrigated corn and soybeans.  A three-

dimensional distributed hydraulic conductivity field was developed using 43 borehole data. 

The groundwater elevation map published in a previous study (McGuire and Kilpatrick, 

1998) was used as the initial head for the simulation.  The northern boundary along Wood 

River, as well as the eastern and western boundaries of the area, were assumed to be 

general head boundaries. Whereas, the Platte River is a source of water to the aquifer 

and was assumed to be a specific head boundary. Furthermore, the groundwater recharge 

ranges from 10 to 30 mm/year, and a 20 mm/yr was used as the average of the range 

(See figure 3-14). The model was discretized in 62 rows, and 110 columns where each 

cell represents 6 acres. River elevations and well pumping rates were defined by the 

variation of the groundwater elevation and evapotranspiration for EEFLUX, respectively.  
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Results show that the groundwater table simulation approaches to the historical 

groundwater data. Nevertheless, the simulated groundwater map varies with respect to 

the historical groundwater map because there is a lack of monitoring wells within the study 

area. The maximum difference between simulated and observed data was 5 feet. 

Consequently, the groundwater flow model will be used to predict groundwater elevation 

for different climatological scenarios.  
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CHAPTER 4 PREDICTION OF THE GROUNDWATER LEVEL IN TH E AREA 

SURROUNDING THE MSEA, CENTRAL PLATTE NEBRASKA UNDER  

FUTURE CLIMATE SCENARIO. 

 

1. Overview 

Understanding the impact of climate change on soil hydrological processes and 

groundwater resources is crucial to assess future agricultural activities (Akbariyeh, 2017). 

Consequently, an accurate description of how the groundwater table behaves under future 

climate conditions is a necessary task to consider. Furthermore, predictions of well 

capacity, groundwater recharge, precipitation and actual evapotranspiration are critical 

initial data for future groundwater table responses. Researchers have applied several 

techniques to forecast the groundwater table based on calibrated groundwater models. 

Nayak et al. (2006)  employed an artificial neural network technique (ANN for short) in 

forecasting the groundwater level fluctuation in an unconfined coastal aquifer in India. An 

ANN is a complex web that consists of many simple neural cells which resemble the 

human brain, and it ANN does not require a mathematical model (Feng and Hong, 2008). 

Peterson et al. (2016) designed a transient groundwater flow model that provided a tool 

for groundwater resource managers to assess the status and availability of groundwater 

resources. They used the soil water balance model (SWB) to estimate groundwater 

recharge from precipitation and groundwater withdrawals from irrigation wells. Cheng et 

at (2002) proposed an empirical statistical model that could likely be used to predict 

variations in groundwater in response to different climate scenarios.  

The present study applied geospatial information to determine climate variables 

that are linked with the groundwater flow. Precipitation, groundwater recharge, and actual 

evapotranspiration are essential variables to be used in the simulated aquifer. This 
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research study intends to apply these variables to predict the groundwater table in the 

study area under a future climate scenario. The Weather Research and Forecasting 

(WRF) model were used to provide the downscaled climate data over the Central Platte 

Basin to predict variables such as precipitation, land use, and air temperature (Akbariyeh, 

2017). In a separate study (Akbariyeh, 2017) , the groundwater recharge (GR) and actual 

evapotranspiration of the site during 2056-2060 were predicted using forecasted soil 

moisture data for the Central Platte Basin. Hydrus 1-D was employed in that study to 

conduct inverse modeling based on Richard’s equation. The hydrostratigraphy properties 

remain constant for the forecasting modeling, as well as the types of boundary conditions. 

Future groundwater boundary data were simulated by applying Fourier Series Regression 

to the historical data. The groundwater flow model developed in Chapter 3 using Visual 

MODFLOW Flex V. 2015 was employed to forecast groundwater table from 2056 to 2060.   

2. Model Assumptions 

The model simulation make use of spatial and temporal data from various sources. 

However, some assumptions were also made due to the lack of information: 

• The number of irrigation wells in the future is the same as in the historical period.  

• Water heads for defining the specific head boundary condition and the reference 

water head for the general boundary condition under the future condition were 

assumed to follow a Fourier time series function of historical water levels. 

• Well screens were assumed to be to the full depth of the well when data were not 

available.  

• The amount of water pumped from the aquifer was assumed to be fully used by 

actual evapotranspiration.  
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3. Methods 

3.1. Boundary Conditions under Future Scenario 

The same types of the boundary conditions were applied under future climate 

conditions. The northern boundary along the Wood River was assumed to be a general 

head boundary, as well as, the west and east sides of the model (McGuire and Kilpatrick, 

1998). Furthermore, the southern boundary is the Platte River, which is hydraulically 

connected to the aquifer. Therefore, the Platte River was modeled as a specific head 

boundary.  In order to apply the general head boundary condition, a reference water level 

was needed. Similarly, to implement the specific head boundary condition at the Platte 

River, water head at the location of Platte River under future scenarios is required. As 

detailed in Chapter 3 for historical data, a time series of groundwater levels at the north 

and south boundaries were obtained by interpolating the groundwater levels in the 

monitoring wells in the area. For future conditions, Fourier series based curve was applied 

to the historical data points. Future boundary data from 2056 to 2060 were predicted by 

extending the Fourier regression equation. The curve fitting tool of the MATLAB (R2016a) 

was used for the regression. Figure 4-25 shows a Fourier series regression for three points 

along the Platte River. 



www.manaraa.com

46 

 

Figure 4-25 . Graphs showing historical groundwater data (Blue dots) and Fourier 

series curve for: (a) Platte River point PR01, (b) Platte River point PR13 and (c) Platte 

River point PR18. 

3.2. Determination of Future Pumping Rates 

Because it is uncertain how many wells will be pumping in the future, the model 

assumes the same number of pumps located in the study area as in the historical period 

(1994 to 2014). Therefore, two hundred fifty-eight wells (258) active pumping wells will 

withdraw water for this future stress period (see Figure 3-16). The locations of pumping 

wells, as well as screen locations and irrigated areas, were kept same as the historical 

information from NDNR website. All the wells were assumed to pump during the growth 

season (from May to October).  

As in the case of the historical period, we assumed that plant transpiration and 

evaporation consumed all pumped water because all pumps were for irrigational 

purposes. If there was any over pumping, it was assumed that extra pumped water 

infiltrated back to the subsurface. Therefore, the amount of water that was pumped out 

was equal to the difference between the precipitation and actual evapotranspiration of the 

crops in the area. For wet days where the precipitation exceeds the actual 

evapotranspiration, it was assumed that there was no water extraction from the aquifer. 

Therefore, the pumping rate for that day is null. Whereas, for dry days where the actual 

evapotranspiration exceeds the precipitation, the difference between them becomes the 

water needed for plants to strive. 
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3.3. Comparison between Future and Past Climate con ditions. 

Precipitation intensity from 1991 to 2014 and 2056 to 2060 are plotted at different 

time intervals. Forecasted rainfall (2056-2060) are compared every five years since 1991 

until 2014 to get a better comparison between the past and future precipitation. Total 

precipitation from 1991 to 1995 during the growing season (from May to October) was 

approximated as 2314 mm which was slightly less than the total precipitation of 2353 mm 

from year 2056 to year 2060. Total precipitation during 1996-2000, 2001-2005, 2006-

2010, 2011-2014 was roughly 2570 mm, 1929 mm, 2824 mm, and 1750 mm, respectively. 

It seems that the precipitation pattern from 2056 to 2060 is closer to the period of 1991-

1995 than to any other period. Due to the variation of precipitation over time, irrigation 
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water requirements and application times will be changed (Akbariyeh, 2017). Figure 4-26 

shows the comparison between historical precipitation and future predicted rainfall.  
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Figure 4-26 . Comparison between historical precipitation and forecasted precipitation 

during growing season (May 1st to October 1st): (a) from years 1991 to 1995, (b) from 

year 1996 to 2000, (c) from year 2001 to 2005, (d) from year 2006 to 2010 and (e) from 

year 2011 to 2014 

3.4. Comparison between historical, actual evapotranspir ation and 

future actual evapotranspiration.  

Future actual evapotranspiration (monthly from 2056 to 2060) was determined by 

Akbariyeh (2017) by applying the inverse modeling in Hydrus 1D. Briefly, by optimizing 

soil hydraulic properties, an inverse procedure was conducted to a vadose zone water 

flow model to best match the soil moisture data during 2057-2059. Then, the model was 

run for the last year (2060) to validate against the optimized soil hydraulic properties. In 
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the model, the water flux that leaves the bottom boundary and upper boundaries are the 

groundwater recharge and actual evapotranspiration, respectively.   Figure 4-27 shows the 

comparison between historical and forecasted actual evapotranspiration.  
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Figure 4-27.  Comparison between historical actual evapotranspiration and forecasted 

actual evapotranspiration during growing season (May 1st to October 1st): (a) from years 

1991 to 1995, (b) from year 1996 to 2000, (c) from year 2001 to 2005, (d) From year 

2006 to 2010 and (e) from year 2011 to 2014 

Total actual evapotranspiration (ETa) amounts from 1991 to 2014 and 2056 to 

2060 were plotted at different time intervals. Forecasted ETa (2056-2060) were compared 

every five years from 1991 until 2014. Total ETa during the interval 1991 to 1995 was 

approximately 2691 mm during the growing season which is smaller compared to total 

ETa of 2317 mm during 2056 to 2060. Furthermore, total ETa during 1996-2000, 2001-

2005, 2006-2010, 2011-2014 was roughly 2609 mm, 2551 mm, 2684 mm and 1949 mm, 

respectively. Actual evapotranspiration depends on the available soil moisture for the 

crops. Greater ETa in the past than in the future means that less water will be consumed. 
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 Finally, to calculate the pumping rate for each well within the aquifer, it was 

necessary to multiply the irrigated area of each well with the difference between actual ET 

and precipitation, which provides a pumping rate in the unit of ft3/d. Table 3 shows an 

example calculation of a well that irrigates 100 acres. The irrigation season began in May 

and ended in October for the research study  

MONTH ETa   
(mm/d) 

ETa   
(in/d) 

ETa     
(in/M) 

P              

(in/M) 

ETa-
P            

(in/M) 

E-P              
(ft/d) Area(Ft 2) Capacity       

(ft3/d) 

1/1/2056 0 0.000 0  0.00 0.0000 4356000 0 

2/1/2056 0 0.000 0.00  0.00 0.0000 4356000 0 

3/1/2056 0 0.000 0.00  0.00 0.0000 4356000 0 

4/1/2056 0 0.000 0.00  0.00 0.0000 4356000 0 

5/1/2056 0.793 0.031 0.94 5.61 0.00 0.0000 4356000 0 

6/1/2056 3.495 0.138 4.27 1.21 3.06 0.0082 4356000 -35780 

7/1/2056 5.750 0.226 6.79 1.35 5.44 0.0151 4356000 -65840 

8/1/2056 5.590 0.220 6.82 1.80 5.02 0.0135 4356000 -58811 

9/1/2056 3.043 0.120 3.71 0.89 2.82 0.0076 4356000 -33067 

10/1/2056 1.176 0.046 1.39 1.10 0.29 0.0008 4356000 -3497 

11/1/2056 0 0.000 0.00  0.00 0.0000 4356000 0 

12/1/2056 0 0.000 0.00 
 
 0.00 0.0000 4356000 0 

Table 3.  Pumping rate calculate based on actual evapotranspiration and precipitation 

for the year 2056. 

Excess precipitation (ETa-P) is defined as the difference between actual 

evapotranspiration and precipitation. Figure 4-28 shows the comparison between 

historical and future excess precipitation. The trend shows that historical excess 

precipitation is slightly higher than future excess precipitation which indicates that less 

water will be needed to supply water to irrigated lands.    
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Figure 4-28. Monthly Comparison between the past and future actual evapotranspiration 

minus precipitation. (a) 1991-2000, (b) 2001-2014  

0

0.005

0.01

0.015

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

E
T

a-
P

 (
in

/d
)

Time (Months)

Future
Past

0

0.005

0.01

0.015

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

17
1

17
6

18
1

18
6

19
1

19
6

20
1

20
6

21
1

21
6

22
1

22
6

23
1

23
6

24
1

24
6

25
1

25
6

26
1

26
6

27
1

27
6

28
1

28
6

E
T

a-
P

 (
in

/d
)

Time (Months)

Future
Past

1991-2000 

2001-2014 



www.manaraa.com

54 

 

3.5. Future Groundwater Recharge (GR)  

In the model, the water flux that leaves the bottom boundary and upper boundary were 

the groundwater recharge and actual evapotranspiration, respectively. Figure 4-29 shows 

the comparison between future and historical GR recharge, respectively. The study area 

recharge ranges from 10 to 30 mm (See figure 3-14). Average GR in the future is smaller 

than the historical GR data (Akbariyeh, 2017).  Future GR will decrease more than 50% 

probably due to the higher 

 

 Figure 4-29 . Comparison between historical and future groundwater recharge.  
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respectively. The USGS MODFLOW-NWT, a Newton-Raphson formulation for improved 
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moves from the western side to the eastern side of the study area. During this time, the 

groundwater table has an imminent declination due to the influence of climate conditions 

(Precipitation, actual evapotranspiration, and GW withdrawal). Future precipitation is on 

average 47.5 cm/yr, which is slightly higher than the average historical precipitation of 

44.1 cm/yr.  Future ETa is roughly 463 mm/yr from year 2056 to year 2060, smaller than 

the historical actual evapotranspiration that was roughly 520 mm/yr on average for the 

period 1991 to 2014. Furthermore, predicted future GR (0.1 in/yr.) is significantly smaller 

than historical GR (0.8 in/yr.)  All these factors together lead to a constant groundwater 

table declination during the future simulation period (2056-2060). Based on the simulation 

results, the groundwater declines approximately 0.66 ft/yr. Figure 4-31 provides a time 

series of water table changes at the four corner points of the MSEA. Groundwater levels 

showed a steady decline at the site as well. As during the historical period, groundwater 

levels show some level of declination and fluctuation. On average, the groundwater level 

in the area surrounding the MSEA decreases 0.66 ft per year which give a total 1 meter 

of decrease over the five years of simulation. Furthermore, the groundwater level declines 

on average 0.6 ft/yr in areas with mainly sandy aquifer near the Wood River, whereas 

areas consisting of gravel (Areas toward Platte River) could decline on average 2 ft/yr.  

Groundwater level declination is more evident at the southwest corner of the MSEA site 

than the other three points because the hydrogeology of the southwest corner of the 

MSEA contains more gravels than sands. Groundwater declination is higher in the future 

than in the past because future precipitation and future ETa are slightly higher compared 

to historical period. Nevertheless, future recharge rates are smaller than historical 

recharge which leads to the predicted decrease of groundwater levels during future. 

Ultimately, the influence of the uncertainties of all variables used for prediction could 

mislead the results from the original values, as well as, few historical monitoring well within 

the site.  
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Figure 4-30.  Groundwater table simulation for non-irrigation season (left picture-May, 

1st) and irrigation season (right picture-August, 1st ) for: (a) 2056, (b) 2057, (c) 2058, (d) 

2059 and (e) 2060 
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Figure 4-32 shows a comparison between groundwater levels from 1993-1995 and 

Future GR from April-2057 to March-2060. A decrease of 0.5 meters is predicted in the 

next 40 years.  

 

Figure 4-31.  Groundwater table declination for fours corners of the Nebraska 
Management System Evaluation Area (MSEA). 

 

 

 

 

 

 

 

Figure 4-32 . Mean groundwater thickness during April-1993 to March-1996 and April-
2057 to March- 2060 (Akbariyeh, 2017).  
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5. Conclusions 

The groundwater table surrounding the MSEA area under future climate scenarios 

was forecast using a groundwater flow model calibrated by historical groundwater level 

monitoring data. In this work, future precipitation data were obtained from downscaled 

climate data using the Weather Research and Forecasting (WRF) model (Akbariyeh, 

2017); the future groundwater recharge rate and actual evapotranspiration were estimated 

based on Hydrus 1D inverse modeling (Akbariyeh, 2017), and future pumping data were 

estimated based on the difference between precipitation and ETa.  It was assumed that 

the amount of future irrigation wells was the same as the historical period due to the 

uncertainty of number of active future wells. The hydraulic conductivity distribution and 

boundary conditions were similar to the historical period. Well screens were assumed to 

be to the full depth of the well when data were not available. 

Initial results show the groundwater declination is about 0.66 ft per year or a total 

of 1 meter on average for the entire simulation period which was five years. The forecasted 

data are 0.50 meters lower than the groundwater table from the 1990’s which indicates 

that the groundwater level still declines from 2014 to 2055 (see figure 4-32).  

Future precipitation was found to be similar to the historical precipitation. 

Nevertheless, future ETa is smaller than historical ETa for about 57 mm/yr, which indicates 

that there will be a lesser crop water use in the future. Future GR is likely to decrease 

more than 50% than historical GR (Akbariyeh, 2017) . Therefore, groundwater levels will  
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decrease due to the higher reduction of future GR, but most importantly due to the 

difference between actual evapotranspiration and precipitation. 

Groundwater declination is going to be greater in areas with higher hydraulic 

conductivity. For instance, simulated groundwater levels show that GW declination in 

gravel and sand areas are roughly 2 ft/yr and 0.66 in/yr, respectively. Ultimately, water-

resources managers and stakeholders will need to assess the status of current agricultural 

practices to mitigate the groundwater declination by defining programs that strictly control 

groundwater withdrawals.  

6. References 

Akbariyeh, S. (2017). Modeling Fate and Transport of Contaminants in the Vadose Zone: Vapor 
Intrusion and Nitrate-N Leaching Under Future Climate Scenarios. 

 
Chen, Z., Grasby, S. E., & Osadetz, K. G. (2002). Predicting average annual groundwater levels 

from climatic variables: an empirical model. Journal of Hydrology, 260(1), 102-117. 
 
Feng, L., & Hong, W. (2008). On hydrologic calculation using artificial neural networks. Applied 

Mathematics Letters, 21(5), 453-458. 
 
Peterson, S. M., Flynn, A. T., & Traylor, J. P. (2016). Groundwater-flow model of the northern 

High Plains aquifer in Colorado, Kansas, Nebraska, South Dakota, and Wyoming (No. 
2016-5153). US Geological Survey. 

 

McGuire, V. L., & Kilpatrick, J. M. (1998). Hydrogeology in the vicinity of the Nebraska 
management systems evaluation area site, central Nebraska (No. 97-4266). US Dept. 
of the Interior, US Geological Survey; Information Services [distributor] 

 

McMahon, P.B., K.F. Dennehy, B.W. Bruce, J.K. Böhlke, R.L. Michel, J.J. Gurdak, and D.B. 
Hurlbut. 2006. Storage and transit time of chemicals in thick unsaturated zones under 
rangeland and irrigated cropland, High Plains, United States. Water Resour. Res. 42(3). 

 
Nayak, P. C., Rao, Y. S., & Sudheer, K. P. (2006). Groundwater level forecasting in a shallow 

aquifer using artificial neural network approach. Water Resources Management, 20(1), 
77-90. 

 
 



www.manaraa.com

60 

 

Novák, V. (2012). Evapotranspiration and Soil Water. In Evapotranspiration in the Soil-Plant-
Atmosphere System (pp. 145-163). Springer Netherlands. 

 
Rijtema, P. E. (1965). An analysis of actual evapotranspiration. Center for Agricultural 

Publications and Documentation. 
 
Szilagyi, J., Harvey, F. E., & Ayers, J. F. (2003). Regional estimation of base recharge to ground 

water using water balance and a base‐flow index. Groundwater, 41(4), 504-513. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

61 

 

CHAPTER 5: CONCLUSIONS 

Groundwater is an important part of the water cycle and is one of the most valuable 

natural resources in the United States. For example, in Central Nebraska, groundwater is 

the main resource of water for farming activities (i.e., irrigation). Irrigation has supported 

agricultural production, resulting in $50 billion in sales in 2012 (U.S. Department of 

Agriculture, 2014). However, variations in the climate could influence the groundwater 

systems both directly by changes in recharge (i.e., recharge due to precipitation and snow 

melting) and indirectly through changes in groundwater uses.  

In this research study, a 3-D groundwater flow model was developed to simulate 

groundwater levels (GWL) in the surrounding area of the MSEA site. The groundwater 

model was developed based on available data, including soil lithology information from 

forty-three test holes, precipitation and satellite ETa data as well as irrigation wells 

information within the research area. Historical groundwater level data were used to 

calibrate the model. The calibrated model was then applied to predict future groundwater 

levels in the area.  Precipitation, groundwater recharge, and actual evapotranspiration are 

essential variables to be used in the simulated aquifer. This research study intends to 

apply these variables to predict the groundwater table in the study area under future 

climate scenario. Downscaled climate data over the Central Platte Basin were obtained 

from the Weather Research and Forecasting (WRF) model (Akbariyeh, 2017).   

Specific conclusions for each chapter are as follows: 

1. A 3D groundwater flow model, containing a realistic heterogeneous hydraulic 

conductivity field, was successfully developed and calibrated with historical 

groundwater level measurements in the area.  

2. Comparison between historical data and simulated groundwater levels indicated 

that the model correctly reproduced groundwater levels during the 1991-2014 
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simulation period using appropriates inputs such as boundary conditions, 

groundwater recharge and pumping rates.  

3. Groundwater declination was higher on the west side of the model than on the east 

side due to higher density of pump wells. Therefore, a larger groundwater 

declination was found on the west side of the study area.   During the non-growing 

season (November to April), groundwater level tends to rise due to the lack of 

pumping and the contribution of precipitation and snowmelt that replenish the 

aquifer; whereas, during the growing season (May to October), groundwater table 

tends to decrease due to water pumped for irrigations. Comparing both seasons, 

groundwater declination cannot be fully compensated by groundwater recharge, 

especially in areas where the hydraulic conductivity is higher. 

4. The future groundwater table showed a declination trend due to a significant 

reduction of the groundwater recharge. For this area, the excess precipitation is 

slightly smaller in future predictions than in the past under the assumption that the 

future density of pump wells remains constant since 2014.  

5. Future groundwater level declination is impacted by the distribution of subsurface 

hydrogeology of the study area. South areas with mainly gravel show higher 

declination rates than north boundary areas with smaller hydraulic conductivity.  

5.1 Recommendations for Future Research:  

• The model considered an average groundwater recharge due to the lack of data 

for this area. Therefore, a study of how the groundwater recharge varies spatially 

will be helpful to improve the model. 

• The 3D groundwater model can be coupled with a contaminant transport model to 

estimate transport of contaminant throughout the area by using appropriate inputs. 
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• Future studies can utilize the groundwater model to predict groundwater level in a 

different period by applying appropriate boundary conditions values, groundwater 

recharge, and pumping rate.  

• The hydrogeology of the site was developed by using interpolation techniques for 

43 boreholes. This can be improved by including additional monitoring wells in the 

study area.  
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